行业类型高耸建筑检测
服务范围烟囱检测
服务区域全国各地
报价方式电询或面议
公司地址上海
受检烟囱位于吉林省长春市,该烟囱建造于1982年,由于该烟囱已经使用多年,为了解受检烟囱的结构*性能状况,为后续使用提供依据,特委托对该烟囱进行*性检测。
根据*性检测的相关要求,针对受检烟囱的特点和实际状况,本次烟囱检测的主要内容包括:
(1) 烟囱建筑、结构概况调查;
(2) 烟囱完损情况检测(包括筒壁现状检测、内衬现状检测);
(3) 烟囱筒壁材料强度抽样检测;
(4) 烟囱变形测量;
(5) 内衬(筒)与隔热层检测;
(6) 附属设施(钢平台、爬梯、航空障碍灯、航空标志等)检测;
(7) 烟囱承载力验算;
(8) 综合现场检测结果,出具检测报告;
(9) 针对存在的问题,提出处理建议。
每到冬天来临之际,中国北方每城市都要进行供暖季前的准备工作,以确保在寒冷的冬日里为广大提供一个温暖、舒适的生活工作环境。日前,厂房检测中心接到来自吉林某的锅炉房烟囱质量检测的咨询,经过多方接触和沟通,双方很快签订了检测合同。陕西分公司在接到检测任务后*组织技术人员进行组织策划。从往返的交通安排、当地的资源寻找,到检测方案的细化、检测仪器设备的准备等。
在与客户就检测的具体时间和相关配合工作确定好后,一切准备就绪,检测们踏上了从西安到吉林的航班。经过近的长途奔袭,于下午5点左右到达检测地点,在委托方对接人的**下,对现场进行了详细查看和初步的了解,并及时对我们的检测实施方案进行相应的调整。根据现场查看的实际情况,采用通长的蜘蛛人进行高空检测具有很大的危险性,为*起见决定采用无人机进行烟囱上部高空检测。
第二天早,检测们就带着仪器设备来到检测地点,先采用砂浆贯入仪对烟囱筒体的砌筑砂浆进行贯入度检测,检测砂浆强度;然后在筒体上取砖样,进行砖抗压强度检测;之后采用全站仪,卷尺等对烟囱整体的直径、高度、倾斜变形等进行测量;后采用无人机和相机等设备对烟囱内外部及**部的整体质量损伤情况进行检测和拍照,记录烟囱从上到下每一处的开裂、脱落、缺陷等损伤。
经过近两天的忙碌,陕西分公司顺利完成了吉林某的烟囱质量检测任务,为即将到来的供暖季提供了坚实的技术**。

受检烟囱为单筒式钢筋混凝土烟囱,建造于2001年,原作为电厂内排烟烟囱使用,目前处于闲置状态。本次烟囱检测结论及建议如下。
1.结论
(1)通过对现场的实地考察及向相关人员了解,烟囱用途为排烟、积灰使用,该烟囱主体结构自建成以来未发生使用功能改变、使用荷载过大及火灾等情况。
(2)房屋变形测量结果表明,所测范围内烟囱倾斜为3‰,参考《工业建筑**性标准》G144-2019*9.2.7条可评定为b级。
(3)检测结果表明,烟囱目前主要存在筒壁多条竖向裂缝,裂缝宽度1.5,取芯检测结果显示裂缝为贯穿性裂缝,钢爬梯局部损坏,平台钢板锈蚀以及出烟口处混凝土脱落,钢筋外露等情况。
(4)计算结果表明,烟囱实配钢筋满足计算配筋要求。
2.建议
(1)对于筒壁竖向裂缝部位进行**清理,并根据裂缝宽度采用压力灌浆或表面封闭法进行处理。
(2)对于局部存在的混凝土保护层脱落,钢筋外露情况,建议*疏松混凝土后,对于外露钢筋进行除锈以及防锈处理,采用高标号细石混凝土进行修复。
(3)建议增设沉降观测点,对沉降变化及附属构件每年进行定期检查、监测。

烟囱检测-检测依据
(1)《建筑结构检测技术标准》(GB/T50344-2004);
(2)《建筑变形测量规范》(JGJ8-2016);
(3)《回弹法检测混凝土抗压强度技术规程》(JGJ/T23-2011);
(4)《钻芯法检测混凝土强度技术规程》(CECS 03:2007)。
烟囱检测-判定标准
(1)《建筑抗震标准》(GB 50023-2009);
(2)《建筑结构荷载规范》(G009-2012);
(3)《混凝土结构设计规范》(G010-2010)(2015版);
(4)《混凝土结构现场检测技术标准》(GB/T 50784-2013);
(5)《烟囱设计规范》(G051-2013);
(6)《建筑结构**度设计统一标准》(GB 50068-2018);
(7)《建筑工程抗震设防分类标准》(G223-2008);
(8)《建筑抗震设计规范》(G011-2010)(2016年版);
(9)《工业建筑**性标准》(G144-2019)。

烟囱检测现场检查结果
1)原始资料调查
原始资料调查包括:原设计图纸及地质勘查报告,历次维造情况等。本工程原基础及上部烟筒结构图纸基本齐全,本次烟囱检测主要依据该设计图纸。该烟囱1978年底设计,1979年开工建设,采用滑模施工,1982年年4月建成投入使用。1989年~1990年间曾对该烟囱进行过普查,未发现明显缺陷。1995年,在日常检查中,发现烟囱筒身存在钢筋锈蚀、混凝土开裂、酥松现象,同年对裂缝进行了修补。2003年~2005年间电厂实施烟气脱硫改造项目,采用湿法脱硫,设GGH,2006年11月~2008年11月两炉相继投入使用。
2)烟囱运行条件:
a)2台机组共用,两侧钢烟道,设有隔烟墙;
b)未脱硫烟气温度160℃,脱硫改造后设GGH,正常情况下约80~100℃;
3)地基基础检查:
烟囱基础采用钢管桩基础,底部设置钢筋混凝土圆形承台共同承担筒壁和平台柱。承台直径32m,共设有149根桩。基础混凝土强度等级为300#,底部有100厚素混凝土垫层。
对烟囱的地基基础的检查中,未发现由于地基不均匀沉降造成的上部结构明显的倾斜、变形、裂缝等缺陷,建筑地基和基础无静载缺陷,地基基础基本完好。现场对烟囱周围地基土进行取样分析,地基土的PH值为7.4,酸碱度基本为中性,对混凝土基本无影响。
火力发电厂的烟囱、冷却塔和水塔等高耸建筑物在建造和运行时一旦发生倾斜,其后果是不言而喻的。同时,随着使用年限的延伸,因周围地形不均匀沉降、风吹日晒、自身反复热胀冷缩等原因,也会产生一定的倾斜变形,且不同高度变形量的大小和规律也不同。因此应定期对烟囱进行检测,以确保烟囱的*运行。
传统的烟囱倾斜观测方法主要有前方交会法和竖直投点法两种。
1、前方交会法是通过在建筑物附近两个观测基点上架设仪器,利用前方交会原理测量观测点的坐标变化量,以确定其水平位移值及位移方向。优点是观测精度较高,缺点是精度由交会角的大小决定,一般要求交会角满足60°~ 120°,但监测现场往往受通视条件限制,难以满足图形条件的要求。
2、竖直投点法,先放样出两条相互垂直的控制轴线作为性测量控制桩。在轴线控制点上安置全站仪,并在垂直于该轴线的烟囱边缘放置钢尺,用仪器将烟囱**部边缘和底部边缘投放到钢尺上,设其读数为T ′1、T ′2 和F ′1、F ′2。将仪器移至另一轴线控制点上,按同样方法测量和计算出烟囱在该轴线上的偏移分量e2,此方法原理简单,观测精度也较高。但需在烟囱底部安置**的水平读数设备,故对场地和通视条件要求较高,易影响观测精度。
另外,三点圆心监测法。根据烟囱周围已知控制点A 和B,利用免棱镜全站仪坐标测量法,直接测量出观测点坐标,由坐标差值计算水平位移分量和位移方向,根据各个不同高度的观测圆和底部中心坐标,可以较方便地计算各点位移量和位移方向。实际工程中常采用增加观测组求均值的方法,以剔除粗差,提高测量精度和**性。
http://sunset123.cn.b2b168.com